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Summary. The p-version of the finite element method is utilized in a fully three- 
dimensional bound state calculation of the vibrational spectrum of H20. The 
algorithm shows the possibility of using the finite element method to calculate 
highly excited vibrational levels of triatomic molecules. 
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1. Introduction 

The recent effort to construct algorithms for calculating accurate ro-vibrational 
states of triatomic molecules has led to the development of efficient numerical 
procedures. The discrete variable representation and the successive diagonalization 
and truncation technique developed by Light's group has already been applied to 
many systems and, among them, we cite LiCN/LiNC [1, 2], HCN/HNC [3-6] 
and van der Waals complexes [7]. Tennyson and collaborators [8-10] developed 
algorithms based on Jacobi coordinates and converged highly excited vibrational 
levels of H;'. Carter and Meyer [11] and Ba~i~ and Zhang [12, 13] also developed 
techniques for calculating high lying states of D3h molecules and applied the 
program to H~. The water molecule has also been studied utilizing fully three- 
dimensional methods. A calculation by Ba6i6 et al. [14] utilized a Sorbie-Mur- 
rel-type potential energy surface [15] and obtained a spectrum which is not in good 
agreement with the experimental measurements. The discrepancy is probably due 
to the potential energy surface. Soares Neto and Linderberg [16], in a first attempt 
to use the finite element method for bound state problems, developed an algorithm 
based on the h-version of the finite element method and applied it to the study of 
H20 using a potential energy surface fitted by Jensen [17]. 

More recently, several calculations for the ro-vibrational energies of water have 
appeared in the literature which give results for highly excited ro-vibrational levels 
which are in good agreement with experimental measurements. Fernley et al. [18] 
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applied Radau coordinates and the discrete variable representation to calculate 
states up to 22 000 cm - 1 with four potential energy surfaces. They concluded that 
Jensen's potential [17] reproduces the observed energies well but shows a small 
systematic error for many higher band origins. Wei and Carrington [19] and Choi 
and Light [20] studied high lying vibrational levels of the water molecule applying 
a discrete variable representation. Choi and Light [20] also investigated local/ 
normal mode transitions, Fermi resonances, Darling-Dennison interactions and 
the modes separabilities. We also cite a recent work by Tennyson [21] where he 
calculates rotationally excited states of H2S, H 2 0  and H;-. 

The wave function of a molecule in a high lying vibrational state may be spread 
over a large region of the nuclear configuration space. Moreover, the wave function 
is highly oscillatory and a procedure to calculate it must be able to describe 
the system accurately in the whole region. This imposes serious difficulties and the 
more traditional methods [22] are accurate for the lower levels but fail for the 
higher ones. 

The solution of the Schr6dinger equation for vibrational states of a triatomic 
molecule involves the choice of good coordinates and a numerical method for 
expanding the wave function. Moreover, the matrix associated with the problem 
tends to be large and contraction procedures must generally be used in order to 
make the problem feasible within the computational resources at hand. 

The hyperspherical coordinates are now of common use in both scattering 
[23-27] and bound states [28-30] calculations. The triatomic system, expressed in 
the center of mass coordinate system, may be described by a hyperradius, which 
ranges from zero to infinity, and a set of five hyperangles that have finite ranges. 
The six hyperspherical coordinates may be divided into two sets. The potential 
energy surface depends on three internal coordinates and the tumbling and rota- 
tion of the system is described by the three remaining ones. There are different ways 
of defining a set of hyperspherical coordinates but all definitions are simply related 
to each other. The set we use in this paper was developed by Mead [31] and 
intensively utilized by Linderberg and collaborators [32-35]. 

The finite element method is a variational numerical approach frequently 
applied in engineering problems [-36-37]. Its utilization in theoretical chemistry is, 
however, not extensive. The finite element method is a general name for several 
procedures which uses the discretization of the space in elements and the expansion 
of the wave function in terms of polynomials for each of these elements. There are 
two versions of the finite element method. In the h-version one expands the wave 
function in all elements with polynomials of the same degree [38]. The conver- 
gence, in this case, is achieved when the number of elements becomes big enough. 
The p-version allows one to use different degrees of polynomials in different 
elements [39, 40]. In this way, one can place high degree polynomials where the 
potential allows the wave function to have amplitude and low degree polynomials 
where the wave function has negligible amplitude. Convergence can be reached by 
balancing the number of elements in the mesh and the degree of the polynomials in 
each element. 

In the present work a new algorithm utilizing the p-version of the finite element 
method and the hyperspherical coordinates is used. The finite element method 
produces large matrices, which are, however, symmetric and sparse. The problem 
matrix becomes too large when we need to calculate many vibrational states. 
A procedure to contract the matrix is necessary and we develop a method, based 
upon the successive diagonalization and truncation procedure, adapted to the 
finite element method. The potential energy surface is the same as applied in the 
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previous calculation [17]. We calculated vibrational states to even symmetry up to 
16 000 cm - 1 and of odd symmetry up to 13 000 cm - 1. The limitation is due to the 
computer facilities available at the Department of Physics, University of Brasilia 
(VAX-8350). The algorithm would be able to converge more states on a more 
powerful machine. 

The paper is organized as follows. In Section 2 we discuss the hyperspherical 
coordinates. Section 3 describes the one and two-dimensional theory of the 
p-version of the finite element method. Section 4 shows the implementation details 
and in Section 5 our results are discussed and compared to the experimental 
measurements. Finally, in Section 6 we give our concluding remarks. 

2. Hyperspherical coordinates 

The hyperspherical coordinates were introduced by nuclear physicists aiming at 
studying few body problems [41-44]. The introduction of such a system of 
coordinates in quantum chemistry was done by Kuppermann [45] and Johnson 
[46, 47]. The hyperspherical coordinates have successfully been applied to scatter- 
ing [23-27] and bound state [28-30] calculations involving triatomic molecules. 
We give here basic definitions and refer the reader to the references cited above for 
more details. 

We first introduce the mass weighted Jacobi coordinates, 

(miX1 + m2X2 + m3X3) 
G = M ' (1) 

1 (  ma "] t/2 
R = ~  ~nl T m3 J " [ m l ( X 1 - - X 2 ) + m 3 ( X I - - X 3 ) ] ,  (2) 

,- = [- ]1. 
LM(m ¥ - (3 )  

The vector Gis the center of mass of the system; ml, m2 and m 3 are the masses of 
the three nuclei and M is the total mass. The vectors Xi, i = 1, 2, 3, give the position 
Of each nucleus in relation to the laboratory system. 

The internal hyperspherical coordinates are defined as 

q = (R "R + r ' r )  1/2 , (4) 

[ ( R ' R  - -  r.r)  2 + 4(R.r) 2] 
P = (R 'R  -{- r ' r )  2 ' (5) 

2 R . r  "] 
0 = arctg R . R  - r . r J "  (6) 

The quantity q, the hyperradius, has a range varying from zero to infinity. 
The hyperangles p and 0 are defined in the range p = [0, 1] and 0 = [0, 2re]. The 
potential energy surface of a triatomic molecule, written in terms of hyperspherical 
coordinates, depends upon q, p and 0. The Schr6dinger equation in this set of 
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hyperspherical coordinate for the total angular momentum J = 0 is given by 

{ 1 F~2 4 C3 ~ 4 4 ~z 1 
-- ~-~L~q 2 + ~ ~p (1 - p2) ~P + qZp~ q2p--2 

+ W(q,p,O)+ ~(q,p,O)=EtP(q,p,O). (7) 

The function W(q, p, O) is the potential energy surface. We expand the wave 
function ~(q, p, 0) as follows: 

7J(q, p, O) = ~ Qi(q)E2k(p, O)aik. (8) 
ik 

In the following section we will develop the one- and two-dimensional theory of 
the p-version of the finite element method and use it to express the functions Qi(q) 
and ~2k(p, 0). 

3. The p-version of the finite element method 

Calculations have been performed for molecular problems using the finite element 
method. Jaquet [48, 49] applied a two-dimensional approach to calculate the cross 
section for the reactive scattering between an atom and a diatomic molecule. Sato 
and Iwata [50] also used two-dimensional finite element method to deal with 
bound state problems. Fully three-dimensional calculations have been reported by 
Kuppermann and Hipes [-51], Parker et al. [52] and Linderberg and collaborators 
[-53-55]. We also mention applications of the finite element method to calculate 
the electronic structure of atoms and molecules [-56-60]. Most of the published 
work applies the h-version of the finite element method. Clementi and collabo- 
rators [60] applied the one-dimensional p-version to electronic structure calcu- 
lations. 

One-dimensional theory 

The finite element method basically uses two steps for expanding the wave func- 
tion. The space is discretized into elements and the wave function is represented, 
within each element, by polynomials. The p-version uses the so-called interpolation 
and shape functions. If we consider an element AB, the interpolation functions 
Is(q) and I2(q) are first degree polynomials defined as 

and 

B - q  (9) 
I i ( q ) = B _  A 

q - - A  
I2(q) - ~ - -A .  (10) 

The function I1 (q) has amplitude one at point A and zero at B and I2(q) is one at 
B and zero at A. The shape functions are defined as linear combinations of 
Legendre polynomials and have the important feature of being zero at both points 
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Fig. l a -e .  The one-dimensional interpolation and shape functions of the finite element method 
p-version. The shape functions have null amplitude at the two edges of the element; a interpolation 
function Ii(q); b interpolation function I2(q); c shape function Sl(q); d shape function S2(q); e shape 
function $3 (q) 

A and B. They are written as 

1 
S.(q) - (4n + 2) 1/2 [P.+I(Y) + P . - I (Y) ] ,  (11) 

where the functions P,(y) are the Legendre polynomials and y = 211(q) -  1. 
Figure 1 shows the interpolation functions Ii(q) and I2(q) as well as the shape 
functions Sl(q), S2(q) and S3(q). 

A function f(q) may be expanded in terms of Ii(q), Ia(q) and S,(q), 
n = 1, 2 . . . .  , N, as follows: 

2 N 
f(q) = ~ I.(q)a. + ~ S~(q)b,. (12) 

n= l  n= l  

In the finite element theory the expansion coefficients a, and b, are variational 
parameters. 

Two-dimensional theory 

A two-dimensional region may be discretized by triangles and we consider the 
element ABC of the mesh. It is convenient to define the baricentric coordinates 
a(p, 0), b(p, O) and c(p, 0), 

a(p, 0 ) -  

1 1 

0 0 b  

P Pb 
1 1 

0~ Ob 

Pa Pb 

1 

Oc 

P~ 
1 , 

O~ 

P~ 

(13) 
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b(p, 0 ) -  , (14) 1 1 1 

Oa Ob Oc 

Pa Pb Pc 

1 1 1 

Oa Ob 0 

P, Pb P 
c(p, 0 ) -  (15) 1 1 1 

O. Ob O~ 

P. Pb P~ 

The baricentric coordinates are first degree polynomials where a(p, O) has ampli- 
tude one at vertex A and zero at the line BC. The other coordinates, b(p, O) and 
c(p, 0), have the same property in relation to the vertices B and C, respectively. The 
two-dimensional baricentric coordinates play the role of the interpolation func- 
tions in the one-dimensional finite element method theory. 

We may compose higher degree polynomials applying a strategy similar to the 
one in the one-dimensional case. We have two kinds of two-dimensional shape 
functions. The first one has amplitude along one edge of the triangle and null 
amplitude along the two other sides. They may be constructed as follows: 

m 

DAC(p, O) = a(p, O) * Sj[2c(p, O) - 1], (16) 

where S;[2c(p, O) - 1] is a one-dimensional shape function written as 

Sj[2a(p, 0 ) - 1 3  - 
1 

2)1/2{Pj+l[2a(p, O) - 1] + P~-a[2a(p, O) - 1]}. 
(4j + 

We verify that the argument 2a(p, 0) - 1 is between - 1 and 1 for any value of 
p and 0 within the triangle ABC. The function D~.C(p, O) has amplitude different 

from zero along the line AC. The functions DAC(p, O) and D]C(p, O) may be 
constructed in a similar way. Figure 2 shows the behavior of the baricentric 
coordinate a(p, O) as well as of some shape functions The other kind of shape 
functions vanish at all edges of the triangle A B C  and they are called bubble 
functions. They are built in the following way: 

Vijk(p, O) = Si[2a(p, O) -- 1] * S~[2b(p, O) -- 13 * Sk[2c(p, O) -- 13. (17) 

The fact that the amplitude of both kinds of two-dimensional shape functions 
vanishes at all vertices of the triangle allows one to place different number of such 
functions in different elements of the mesh [60]. 
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Fig. 2a-d. The finite element method functions utilized to expand the hyperangular space. We show the 
baricentric coordinate a(p, O) and the shape functions DAC(p, O) which have amplitude along the edge 
AC; a The baricentric coordinate a(p,O); h the shape function D~C(p, 0); e the shape function 
D~-g(p, 0); d the shape function D~3C(p, O) 

4. Implementation details 

The finite element method is a variational theory and we define a functional as 
follows, 

J = ~ ~ { f dq pdp dO a*kQ*(q)~2*(P'O)[E -- H(q'p'O)]f2k'(p' O)Qi'(q)ai'k'} k,k' 

(18) 

1 [ 0  2 4 ~ 0 4 0 2 ] 15 

2_Ml? q  + f V (  1 _ p2)  q2p2 gg2j + 
(19) 

is the Hamiltonian of the system for the total angular momentum J = 0. Equa- 
tion (18) uses the wave function expansion defined by Eq. (8). 

We apply the p-version of the finite element method to express both Qi(q) and 
~?k(P, 0). The procedure involves a basis function optimization for the hyperradius 
direction. First, we choose p and 0 values such that the q-direction line passes 
through the potential energy surface minimum. The Hamiltonian, constrained to 
the one-dimensional degree of freedom, is diagonalized and the q-direction eigen- 
functions are used as basis functions for expanding the full three-dimensional state. 
The p-version of the finite element is used to calculate the optimized basis 

The quantity, 

H(q, p, O) - 
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functions. The advantage of generating these functions numerically is that the 
procedure is quite general and works for any system. 

We show the performance of the p-version of the finite element method for 
solving one-dimensional problems in Table 1. We use a Morse potential fitted to 
the H2 molecule in order to have a neat idea of the convergence. As we can see, this 
method is able to converge all vibrational states of HE very accurately. We utilized 
90 elements, with polynomials of up to the tenth degree in each element, and the 
inter nuclear distance was taken from 0 to 15 bohr. 

The hyperangular (p, 0)-space is expressed by means of a two-dimensional finite 
element method expansion. We first optimized the mesh of triangles. We performed 
several tests and realized that a regular network is preferred to another conforma- 
tion. The p-version of the finite element is then applied. We also noticed that the 
best strategy is a uniform distribution of polynomials over the whole space. The 
fact that highly excited vibrational eigenfunctions are spread over a large part of 
the hyperangular space explains why we need a regular network and a uniform 
distribution of polynomials. 

The molecule under study has a permutation symmetry due to the presence of 
the two identical hydrogen atoms and we can use it to simplify the calculation. As 
we mentioned before, the hyperangles p and 0 are defined in the ranges p = [0, 1] 
and 0 = [-0, 2rc]. The potential energy surface of H20,  written in hyperspherical 
coordinates, expresses its symmetry uniquely through the hyperangle 0. The 
potential has the same behavior for the hyperangle ranging from 0 = 0 ~ ~ and 
0 = zc --, 2re, therefore, the wave function must be even or odd when crossing the 

Table 1. The performance of the one-dimen- 
sional finite element p-version. Comparison 
between the calculated eigenvalues of H2 and 
the exact ones. We used the interval 0.0-15.0 
discretized by 90 elements. The wave function 
was expanded by p-version functions up to the 
10th degree. All values re expressed in cm-1 

State Calculation Exact 

1 2166.1 2166.1 
2 6308.9 6308.9 
3 10199.4 10 199.4 
4 13837.6 13837.6 
5 17223.4 17223.4 
6 20356.9 20356.9 
7 23 238.0 23 238.0 
8 25 866.8 25 866.8 
9 28 243.3 28 243.3 

10 30 367.4 30 367.4 
11 32 239.2 32 239. t 
12 33858.6 33858.6 
13 35225.7 35225.5 
14 36 340.4 35 340.2 
15 37 202.7 37 202.5 
16 37812.9 37812.6 
17 38 170.6 38 170.4 
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line that divides these two regions. In the following, we label each state using its 
symmetry. 

The dimension of the matrix associated with the expansion defined by Eq. (8) 
is given by I x K, where, I and K are the number of basis functions used for 
expanding the q and (p, 0) spaces, respectively. The finite element method usually 
produces large matrices, therefore K tends to be large and the final matrix, of 
dimension I x K, will not be tractable. A truncation method should be designed. 
A procedure commonly used to deal with this problem has been proposed by Light 
and collaborators [1-6] and is known in the literature by the name of successive 
diagonalization and truncation technique. 

The successive diagonalization and truncation technique is applied as follows. 
The (p, 0)-diagonal blocks, obtained when i = i' in Eq. (18) are diagonalized and 
the (p, 0)-eigenvectors are used as optimized basis functions. The off-diagonal 
(p, 0)-blocks, defined when i ~ i', are then built in terms of these new numerical 
basis functions. The number of basis functions to be retained is determined by 
a cut-off energy. Our computational resources allowed us to retain the (p, 0)-basis 
associated with eigenvalues up to 0.25 hartree above the minimum of the potential 
energy function. 

5. Results 

The program begins by optimizing the basis functions for the hyperradial direction. 
We found that for p -- - 0.304, 0 = 0.0 the q-direction line passes through the 
bottom of the potential. The potential energy surface behavior in the q-direction, 
for any bound triatomic system, is similar to a morse potential (see Ref. [-53]). The 
hyperradius interval 0.0 ~ 5.0 bohr and 170 elements, with p-version polynomials 
up to Slo(q) per element, has been used to calculate them. We needed 16 of these 
functions to calculate the vibrational states for H20 showed in Table 2. 

A previous calculation by Ba~i~ et al. [14] utilized a Sorbie-Murrell-type 
potential energy surface. Their calculation is not in good agreement with the 
experimental data. We believe that the discrepancy is due to the potential energy 
surface since the authors used to procedure that has been applied to several other 
molecules and provided good results for them. The more recent calculations by 
Fernley et al. [18], Wei and Carrington [19] and Choi and Light [20] used Jensen's 
surface [17] and reproduced the experimental data well. 

We used the same potential utilized by Miller and Tennyson [18], Wei and 
Carrington [19] and Choi and Light [20]. This is an empirical potential surface 
obtained by Jensen [17] who collected a large amount of experimental data to 
fit it. Table 2 shows states of the water molecule for the even symmetry up to 
16000cm -1 and odd symmetry up to 13000cm -a. We also compare the cal- 
culated numbers with experimental values and calculations by Fernley et al. [18], 
Wei and Carrington [19] and Choi and Light [20] in this table and conclude that 
they are in good agreement. Many of the calculated numbers are less than 1 cm - 1 
off from the experimental determination. Some states, however, show deviations 
higher than 10 cm-2 from the experimental results and from the other calculations. 
There are three key parameters which can be responsible for such deviations: the 
number of q-basis functions, the number of finite elements describing the (p, 0)- 
space and the quantity of(p, 0)-basis functions. We did several tests including other 
finite element meshes and also varied the number of (p, 0)-basis functions and these 
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Table 2. Symmetric and anti symmetric vibrational states of H20. The values are expressed in cm- 1. 
The calculated zero point energy (ZPE) is 4629.978 cm 1. The experimental values have been taken 
from Ref. [17] 

State WC a FMT b CL c Present Obs. 

(010) 1594.3 1594.3 1594.3 1594.2 1594.7 
(020) 3152.0 3152.0 3152.0 3152.0 3151.6 
(100) 3656.4 3656.5 3656.4 3656.1 3657.0 
(001) 3755.9 3756.0 3755.9 3755.7 3755.9 
(030) 4667.7 4667.7 4667.6 4667.9 4666.8 
(110) 5234.2 5234.3 5234.2 5233.9 5234,9 
(011) 5332.0 5333.2 5332.0 5331.8 5331.2 
(040) 6134.1 6134.2 6134.1 6134.9 6134.0 
(120) 6775.0 6775.1 6775.0 6774.8 6775.0 
(021) 6873.4 6873.5 6873.4 6873.5 6871.5 
(200) 7202.6 7202.7 7202.6 7202.1 7201.5 
(101) 7250.9 7251.0 7250.9 7250.4 7249.8 
(002) 7444.9 7445.0 7444.9 7444.6 7445.0 
(050) 7539.7 7539.0 7539.8 7541.4 ? 
(130) 8273.2 8273.3 8273.2 8273.2 8273.9 
(031) 8375.6 8375.7 8375.6 8376,3 8373.8 
(210) 8762.8 8763.0 8762.8 8762.3 8761.5 
(111) 8809.5 8809.7 8809.5 8809.2 8807.0 
(060) 8863.2 8863.3 8863,2 8865.9 ? 
(012) 9002.1 9002.2 9002.1 9001.8 9000.1 
(140) 9719.7 9719.7 9719.7 9720.2 ? 
(041) 9832.5 9834.5 9832.5 9834.1 9833.6 
(070) 10 073.8 10 073.9 10 073.8 10 078.0 ? 
(220) 10 285.4 10 285.9 10 285.7 10 286.9 10 284.4 
(121) 10 332.4 10 332.5 10 332.4 10 333.0 10 328.7 
(022) I0 525.6 10 525.7 10 525.6 10 530.9 10 524.3 
(300) 10 602.7 10 602.9 10 602.7 10 601.8 10 599.6 
(201) 10615.5 10615.7 10615.6 10612.9 10613.4 
(102) 10 869.3 10 869.4 10 869.3 10 868.3 10 868.8 
(003) 10 034.0 10 034.2 10 034,1 10 033.5 10 032.4 
(150) ? 11082,4 11082,2 11084.8 ? 
(080) ? 11234.5 11234,3 11238.3 ? 
(051) ? 11235.3 112352 11242.1 ? 
(230) ? 11766.3 11766,2 11765.7 ? 
(131) 11815.4 11815.6 11815,4 11816.4 11813.2 
(032) ? 12011.6 12011.5 12010.1 ? 
(310) 12 144.4 12 144.6 12144.4 12 143.5 12 139.2 
(211) 12156.5 12 156.7 12 156.5 12 156.8 12151.3 
(160) 9 12 340.8 12 340.7 12 353.6 9. 
(112) 12 408.4 12 408.6 12 408.4 12 407.5 12 407.6 
(090) ? 12 504.2 12 504.0 12 516.4 ? 
(061) ? 12 567.2 12 567.0 12 570.6 ? 
(013) 12 567.0 12 571.5 12 571.3 12 572.7 12 565.0 
(240) ? 13 195.9 13 195.8 13 195.2 ? 
(141) ? 13 252.7 13 252.5 13 253.7 ? 
(042) ? 13 453.7 13 453.6 13 451.2 ? 
(170) ? 13 604.9 13 604.8 13 616.7 
(320) ? 13 647.9 13 647.7 13 667.8 ? 
(221) 13 647.7 13 658.9 13 658.7 13 670.6 13 652.7 
(0100) ? 13 793.5 13 793.4 13 824.1 ? 
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State WC" FMT b CL c Present Obs. 

(202) 13 829.7 13 829.9 13 829.7 13 827.2 13 828.3 
(122) 13 911.7 13 911.9 13 911.7 13 939.2 13 910.8 
(400) 14 223.5 14 223.7 14 223.4 14 217.7 14 221.1 
(004) 14 541.3 14 541.5 14 541.3 14 526.0 14 536.8 
(250) ? 14 549.3 14 549.2 14 551.2 ? 
(180) "~ 14 778.4 14 778.3 14 788.8 ? 
(052) ? 14 859.1 14 858.9 14 861.7 ? 
(330) ? 50109.8 15 109.6 15 101.6 15 107 
(0110) ? 15 181.4 15 181.4 15248.4 ? 
(212) 15 350.1 15 350.3 15 350.1 15 344.8 15 344.4 
(132) ? 15 377.2 15 377.0 15 365.6 ? 
(410) 15 744.1 15 744.3 15 744.0 15 736.6 15 742.7 
(260) ? 15 809.4 15 809.3 15 819.7 ? 
(190) ? 16023.8 16023.7 16031.6 ? 
(014) ? 16 057.8 16 057.6 16 040.8 ? 
(062) ~ 16 187.2 16 187.0 16 194.4 ? 

a Wei and Carrington [19] 
b Fernley et al. [18] 

Choi and Light [20] 

Table 3. Parameters and conversion factors utilized in the calculation 

Hydrogen mass 
Oxygen mass 
Hyperradius range 
Number of elements used for optimizing the hyper- 
radial functions 

Number of optimized hyperradial functions 

Number of triangles used to determine the 
(p, 0)-functions 

Cut-off energy used for keeping the (p, 0)-functions 

Conversion factor between hartree and cm- 1 

1837.416951 au 
29156.946713 au 
0.0 to 5.0 bohr 

170 

16 

841 

0.25 hartree (above the minimum of the 
potential energy surface 

1 hartree = 219474.6 cm 1 

levels  d id  n o t  c h a n g e  s ignif icant ly.  U n f o r t u n a t e l y ,  i t  was  imposs ib l e  to  inc rease  the  
n u m b e r  of  q-basis  as we  were  at  the  l imi t  o f  m e m o r y  of  o u r  mach ine .  

A m e s h  of  841 t r iangles  has  been  used a n d  tha t  p r o d u c e d  f ini te e l e m e n t  m e t h o d  
ma t r i ce s  of  d i m e n s i o n  1395 to be  d i agona l i zed .  T h e  e igenvec to r s  of  these  m a t r i c e s  
were  used  as the  (p, 0)-basis func t ions .  W e  stress t ha t  the  f ini te  e l e m e n t  m e t h o d  
ma t r i ce s  a re  s y m m e t r i c  a n d  sparse.  T h e  f inal  c o n t r a c t e d  m a t r i x  h a d  the  d i m e n s i o n  
599 x 599 for  the  even  s y m m e t r y  a n d  558 x 558 for  the  o d d  one.  T h e  p r o g r a m  t o o k  
6 - 7  h o f  C P U  of  a V A X - 8 3 5 0  to  run  each  s y m m e t r y .  

F ina l ly ,  in T a b l e  3, we  give all  p a r a m e t e r s  a n d  c o n v e r s i o n  un i t  fac tors  we  
ap p l i ed  in this ca l cu la t ion .  T h e  h y p e r r a d i a l  r ange  f r o m  0 to  5 b o h r  used  here  has  
been  d e t e r m i n e d  by  m e a n s  of  severa l  test  runs.  T h e  ene rgy  cu t -o f f  u t i l ized  for  
k eep ing  the  (p, 0 ) -e igenfunc t ions  was  0.25 h a r t r e e  a b o v e  the  m i n i m u m  of  the  
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potent ia l  energy surface. All calculations have been done in atomic units  and  the 
final energies converted to cm-1 .  

6. Conclusions 

The p-version of the finite element method  provided a stable and  reliable a lgori thm 
to calculate b o u n d  states of t r ia tomic molecules and the fully three-dimensional  
wave funct ion was obtained.  Moreover,  the symmetry associated with the problem 
was easily implemented.  The method was applied to the calculat ion of the bound  
states of the water molecule and converged m a n y  levels for both  even and  odd 
symmetries. In  this way, we showed that  the finite element method  can be used to 
Calculate highly excited vibra t ional  states of t r ia tomic systems. We also point  out  
that the procedure is quite general and  may readily be applied to other molecules. 
The a lgor i thm involves the opt imizat ion of functions for both  the hyperradial  
direction and the hyperangular  space and  uses the p-version of the finite element 
method  to perform such optimizations.  The final contracted matrix had the 
d imens ion  599 x 599 for the even symmetry and 558 x 558 for the odd one. 
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